https://doi.org/10.4049/jimmunol.176.2.778 · Повний текст
Видання: The Journal of Immunology, 2006, №2, с.778-789
Видавець: The American Association of Immunologists
Автори:
- Brianna N. Stillman
- Daniel K. Hsu
- Mabel Pang
- C. Fred Brewer
- Pauline Johnson
- Fu-Tong Liu
- Linda G. Baum
Анотація
AbstractGalectins are a family of mammalian β-galactoside-binding proteins that positively and negatively regulate T cell death. Extracellular galectin-1 directly induces death of T cells and thymocytes, while intracellular galectin-3 blocks T cell death. In contrast to the antiapoptotic function of intracellular galectin-3, we demonstrate that extracellular galectin-3 directly induces death of human thymocytes and T cells. However, events in galectin-3- and galectin-1-induced cell death differ in a number of ways. Thymocyte subsets demonstrate different susceptibility to the two galectins: whereas galectin-1 kills double-negative and double-positive human thymocytes with equal efficiency, galectin-3 preferentially kills double-negative thymocytes. Galectin-3 binds to a complement of T cell surface glycoprotein receptors distinct from that recognized by galectin-1. Of these glycoprotein receptors, CD45 and CD71, but not CD29 and CD43, appear to be involved in galectin-3-induced T cell death. In addition, CD7 that is required for galectin-1-induced death is not required for death triggered by galectin-3. Following galectin-3 binding, CD45 remains uniformly distributed on the cell surface, in contrast to the CD45 clustering induced by galectin-1. Thus, extracellular galectin-3 and galectin-1 induce death of T cells through distinct cell surface events. However, as galectin-3 and galectin-1 cell death are neither additive nor synergistic, the two death pathways may converge inside the cell.
Список літератури
- Opferman, J. T., S. J. Korsmeyer. 2003. Apoptosis in the development and maintenance of the immune system. Nat. Immunol. 4: 410-415.
https://doi.org/10.1038/ni0503-410 - Tsujimoto, Y.. 2003. Cell death regulation by the Bcl-2 protein family in the mitochondria. J. Cell. Physiol. 195: 158-167.
https://doi.org/10.1002/jcp.10254 - Ware, C. F., S. VanArsdale, T. L. VanArsdale. 1996. Apoptosis mediated by the TNF-related cytokine and receptor families. J. Cell Biochem. 60: 47-55.
https://doi.org/10.1002/(SICI)1097-4644(19960101)60:1<47::AID-JCB8>3.0.CO;2-3 - Hernandez, J. D., L. G. Baum. 2002. Ah, sweet mystery of death: galectins and control of cell fate. Glycobiology 12: 127R-136R.
https://doi.org/10.1093/glycob/cwf081 - Rabinovich, G. A., L. G. Baum, N. Tinari, R. Paganelli, C. Natoli, F. T. Liu, S. Iacobelli. 2002. Galectins and their ligands: amplifiers, silencers or tuners of the inflammatory response?. Trends Immunol. 23: 313-320.
https://doi.org/10.1016/S1471-4906(02)02232-9 - Hsu, D. K., F. T. Liu. 2004. Regulation of cellular homeostasis by galectins. Glycoconj. J. 19: 507-515.
https://doi.org/10.1023/B:GLYC.0000014080.95829.52 - Pace, K. E., H. P. Hahn, M. Pang, J. T. Nguyen, L. G. Baum. 2000. CD7 delivers a pro-apoptotic signal during galectin-1-induced T cell death. J. Immunol. 165: 2331-2334.
https://doi.org/10.4049/jimmunol.165.5.2331 - Sturm, A., M. Lensch, S. Andre, H. Kaltner, B. Wiedenmann, S. Rosewicz, A. U. Dignass, H. J. Gabius. 2004. Human galectin-2: novel inducer of T cell apoptosis with distinct profile of caspase activation. J. Immunol. 173: 3825-3837.
https://doi.org/10.4049/jimmunol.173.6.3825 - Yang, R. Y., D. K. Hsu, F. T. Liu. 1996. Expression of galectin-3 modulates T-cell growth and apoptosis. Proc. Natl. Acad. Sci. USA 93: 6737-6742.
https://doi.org/10.1073/pnas.93.13.6737 - Kuwabara, I., Y. Kuwabara, R. Y. Yang, M. Schuler, D. R. Green, B. L. Zuraw, D. K. Hsu, F. T. Liu. 2002. Galectin-7 (PIG1) exhibits pro-apoptotic function through JNK activation and mitochondrial cytochrome c release. J. Biol. Chem. 277: 3487-3497.
https://doi.org/10.1074/jbc.M109360200 - Hadari, Y. R., R. Arbel-Goren, Y. Levy, A. Amsterdam, R. Alon, R. Zakut, Y. Zick. 2000. Galectin-8 binding to integrins inhibits cell adhesion and induces apoptosis. J. Cell Sci. 113: 2385-2397.
https://doi.org/10.1242/jcs.113.13.2385 - Hotta, K., T. Funahashi, Y. Matsukawa, M. Takahashi, H. Nishizawa, K. Kishida, M. Matsuda, H. Kuriyama, S. Kihara, T. Nakamura, et al 2001. Galectin-12, an adipose-expressed galectin-like molecule possessing apoptosis-inducing activity. J. Biol. Chem. 276: 34089-34097.
https://doi.org/10.1074/jbc.M105097200 - Kashio, Y., K. Nakamura, M. J. Abedin, M. Seki, N. Nishi, N. Yoshida, T. Nakamura, M. Hirashima. 2003. Galectin-9 induces apoptosis through the calcium-calpain-caspase-1 pathway. J. Immunol. 170: 3631-3636.
https://doi.org/10.4049/jimmunol.170.7.3631 - Perillo, N. L., K. E. Pace, J. J. Seilhamer, L. G. Baum. 1995. Apoptosis of T cells mediated by galectin-1. Nature 378: 736-739.
https://doi.org/10.1038/378736a0 - Perillo, N. L., C. H. Uittenbogaart, J. T. Nguyen, L. G. Baum. 1997. Galectin-1, an endogenous lectin produced by thymic epithelial cells, induces apoptosis of human thymocytes. J. Exp. Med. 185: 1851-1858.
https://doi.org/10.1084/jem.185.10.1851 - Pace, K. E., C. Lee, P. L. Stewart, L. G. Baum. 1999. Restricted receptor segregation into membrane microdomains occurs on human T cells during apoptosis induced by galectin-1. J. Immunol. 163: 3801-3811.
https://doi.org/10.4049/jimmunol.163.7.3801 - Nguyen, J. T., D. P. Evans, M. Galvan, K. E. Pace, D. Leitenberg, T. N. Bui, L. G. Baum. 2001. CD45 modulates galectin-1-induced T cell death: regulation by expression of core 2 O-glycans. J. Immunol. 167: 5697-5707.
https://doi.org/10.4049/jimmunol.167.10.5697 - Amano, M., M. Galvan, J. He, L. G. Baum. 2003. The ST6Gal I sialyltransferase selectively modifies N-glycans on CD45 to negatively regulate galectin-1-induced CD45 clustering, phosphatase modulation, and T cell death. J. Biol. Chem. 278: 7469-7475.
https://doi.org/10.1074/jbc.M209595200 - Ueda, S., I. Kuwabara, F. T. Liu. 2004. Suppression of tumor growth by galectin-7 gene transfer. Cancer Res. 64: 5672-5676.
https://doi.org/10.1158/0008-5472.CAN-04-0985 - Fukumori, T., Y. Takenaka, T. Yoshii, H. R. Kim, V. Hogan, H. Inohara, S. Kagawa, A. Raz. 2003. CD29 and CD7 mediate galectin-3-induced type II T-cell apoptosis. Cancer Res. 63: 8302-8311.
- Matarrese, P., N. Tinari, M. L. Semeraro, C. Natoli, S. Iacobelli, W. Malorni. 2000. Galectin-3 overexpression protects from cell damage and death by influencing mitochondrial homeostasis. FEBS Lett. 473: 311-315.
https://doi.org/10.1016/S0014-5793(00)01547-7 - Yu, F., R. L. Finley, Jr, A. Raz, H. R. Kim. 2002. Galectin-3 translocates to the perinuclear membranes and inhibits cytochrome c release from the mitochondria: a role for synexin in galectin-3 translocation. J. Biol. Chem. 277: 15819-15827.
https://doi.org/10.1074/jbc.M200154200 - Kaltner, H., K. Seyrek, A. Heck, F. Sinowatz, H. J. Gabius. 2002. Galectin-1 and galectin-3 in fetal development of bovine respiratory and digestive tracts: comparison of cell type-specific expression profiles and subcellular localization. Cell Tissue Res. 307: 35-46.
https://doi.org/10.1007/s004410100457 - Villa-Verde, D. M., E. Silva-Monteiro, M. G. Jasiulionis, D. A. Farias-De-Oliveira, R. R. Brentani, W. Savino, R. Chammas. 2002. Galectin-3 modulates carbohydrate-dependent thymocyte interactions with the thymic microenvironment. Eur. J. Immunol. 32: 1434-1444.
https://doi.org/10.1002/1521-4141(200205)32:5<1434::AID-IMMU1434>3.0.CO;2-M - Dietz, A. B., P. A. Bulur, G. J. Knutson, R. Matasic, S. Vuk-Pavlovic. 2000. Maturation of human monocyte-derived dendritic cells studied by microarray hybridization. Biochem. Biophys. Res. Commun. 275: 731-738.
https://doi.org/10.1006/bbrc.2000.3372 - Blaser, C., M. Kaufmann, C. Muller, C. Zimmermann, V. Wells, L. Mallucci, H. Pircher. 1998. β-Galactoside-binding protein secreted by activated T cells inhibits antigen-induced proliferation of T cells. Eur. J. Immunol. 28: 2311-2319.
https://doi.org/10.1002/(SICI)1521-4141(199808)28:08<2311::AID-IMMU2311>3.0.CO;2-G - Seetharaman, J., A. Kanigsberg, R. Slaaby, H. Leffler, S. H. Barondes, J. M. Rini. 1998. X-ray crystal structure of the human galectin-3 carbohydrate recognition domain at 2.1-A resolution. J. Biol. Chem. 273: 13047-13052.
https://doi.org/10.1074/jbc.273.21.13047 - Liao, D. I., G. Kapadia, H. Ahmed, G. R. Vasta, O. Herzberg. 1994. Structure of S-lectin, a developmentally regulated vertebrate β-galactoside-binding protein. Proc. Natl. Acad. Sci. USA 91: 1428-1432.
https://doi.org/10.1073/pnas.91.4.1428 - Sparrow, C. P., H. Leffler, S. H. Barondes. 1987. Multiple soluble β-galactoside-binding lectins from human lung. J. Biol. Chem. 262: 7383-7390.
https://doi.org/10.1016/S0021-9258(18)48248-8 - Ahmad, N., H. J. Gabius, S. Sabesan, S. Oscarson, C. F. Brewer. 2004. Thermodynamic binding studies of bivalent oligosaccharides to galectin-1, galectin-3, and the carbohydrate recognition domain of galectin-3. Glycobiology 14: 817-825.
https://doi.org/10.1093/glycob/cwh095 - Kopitz, J., C. von Reitzenstein, S. Andre, H. Kaltner, J. Uhl, V. Ehemann, M. Cantz, H. J. Gabius. 2001. Negative regulation of neuroblastoma cell growth by carbohydrate-dependent surface binding of galectin-1 and functional divergence from galectin-3. J. Biol. Chem. 276: 35917-35923.
https://doi.org/10.1074/jbc.M105135200 - Baum, L. G., D. P. Blackall, S. Arias-Magallano, D. Nanigian, S. Y. Uh, J. M. Browne, D. Hoffmann, C. E. Emmanouilides, M. C. Territo, G. C. Baldwin. 2003. Amelioration of graft versus host disease by galectin-1. Clin. Immunol. 109: 295-307.
https://doi.org/10.1016/j.clim.2003.08.003 - Cortegano, I., V. del Pozo, B. Cardaba, B. de Andres, S. Gallardo, A. del Amo, I. Arrieta, A. Jurado, P. Palomino, F. T. Liu, C. Lahoz. 1998. Galectin-3 down-regulates IL-5 gene expression on different cell types. J. Immunol. 161: 385-389.
https://doi.org/10.4049/jimmunol.161.1.385 - Manjunath, N., R. S. Johnson, D. E. Staunton, R. Pasqualini, B. Ardman. 1993. Targeted disruption of CD43 gene enhances T lymphocyte adhesion. J. Immunol. 151: 1528-1534.
https://doi.org/10.4049/jimmunol.151.3.1528 - Romzek, N. C., E. S. Harris, C. L. Dell, J. Skronek, E. Hasse, P. J. Reynolds, S. W. Hunt, 3rd, Y. Shimizu. 1998. Use of a β1 integrin-deficient human T cell to identify β1 integrin cytoplasmic domain sequences critical for integrin function. Mol. Biol. Cell 9: 2715-2727.
https://doi.org/10.1091/mbc.9.10.2715 - Wang, Y., P. Johnson. 2005. Expression of CD45 lacking the catalytic protein tyrosine phosphatase domain modulates Lck phosphorylation and T cell activation. J. Biol. Chem. 280: 14318-14324.
https://doi.org/10.1074/jbc.M413265200 - Pace, K. E., H. P. Hahn, L. G. Baum. 2003. Preparation of recombinant human galectin-1 and use in T-cell death assays. Methods Enzymol. 363: 499-518.
https://doi.org/10.1016/S0076-6879(03)01075-9 - Hsu, D. K., R. I. Zuberi, F. T. Liu. 1992. Biochemical and biophysical characterization of human recombinant IgE-binding protein, an S-type animal lectin. J. Biol. Chem. 267: 14167-14174.
https://doi.org/10.1016/S0021-9258(19)49693-2 - Baum, L. G., M. Pang, N. L. Perillo, T. Wu, A. Delegeane, C. H. Uittenbogaart, M. Fukuda, J. J. Seilhamer. 1995. Human thymic epithelial cells express an endogenous lectin, galectin-1, which binds to core 2 O-glycans on thymocytes and T lymphoblastoid cells. J. Exp. Med. 181: 877-887.
https://doi.org/10.1084/jem.181.3.877 - Liu, F. T., D. K. Hsu, R. I. Zuberi, I. Kuwabara, E. Y. Chi, W. R. Henderson, Jr. 1995. Expression and function of galectin-3, a β-galactoside-binding lectin, in human monocytes and macrophages. Am. J. Pathol. 147: 1016-1028.
- Ahmad, N., H. J. Gabius, S. Andre, H. Kaltner, S. Sabesan, R. Roy, B. Liu, F. Macaluso, C. F. Brewer. 2004. Galectin-3 precipitates as a pentamer with synthetic multivalent carbohydrates and forms heterogeneous cross-linked complexes. J. Biol. Chem. 279: 10841-10847.
https://doi.org/10.1074/jbc.M312834200 - Cho, M., R. D. Cummings. 1995. Galectin-1, a β-galactoside-binding lectin in Chinese hamster ovary cells. I. Physical and chemical characterization. J. Biol. Chem. 270: 5198-5206.
https://doi.org/10.1074/jbc.270.10.5198 - Furtak, V., F. Hatcher, J. Ochieng. 2001. Galectin-3 mediates the endocytosis of β-1 integrins by breast carcinoma cells. Biochem. Biophys. Res. Commun. 289: 845-850.
https://doi.org/10.1006/bbrc.2001.6064 - Dong, S., R. C. Hughes. 1996. Galectin-3 stimulates uptake of extracellular Ca2+ in human Jurkat T-cells. FEBS Lett. 395: 165-169.
https://doi.org/10.1016/0014-5793(96)01031-9 - Arencibia, I., G. Frankel, K. G. Sundqvist. 2002. Induction of cell death in T lymphocytes by invasin via β1-integrin. Eur. J. Immunol. 32: 1129-1138.
https://doi.org/10.1002/1521-4141(200204)32:4<1129::AID-IMMU1129>3.0.CO;2-G - Brown, T. J., W. W. Shuford, W. C. Wang, S. G. Nadler, T. S. Bailey, H. Marquardt, R. S. Mittler. 1996. Characterization of a CD43/leukosialin-mediated pathway for inducing apoptosis in human T-lymphoblastoid cells. J. Biol. Chem. 271: 27686-27695.
https://doi.org/10.1074/jbc.271.44.27686 - Lesage, S., A. M. Steff, F. Philippoussis, M. Page, S. Trop, V. Mateo, P. Hugo. 1997. CD4+CD8+ thymocytes are preferentially induced to die following CD45 cross-linking, through a novel apoptotic pathway. J. Immunol. 159: 4762-4771.
https://doi.org/10.4049/jimmunol.159.10.4762 - Moura, I. C., Y. Lepelletier, B. Arnulf, P. England, C. Baude, C. Beaumont, A. Bazarbachi, M. Benhamou, R. C. Monteiro, O. Hermine. 2004. A neutralizing monoclonal antibody (mAb A24) directed against the transferrin receptor induces apoptosis of tumor T lymphocytes from ATL patients. Blood 103: 1838-1845.
https://doi.org/10.1182/blood-2003-07-2440 - Ng, P. P., J. S. Dela Cruz, D. N. Sorour, J. M. Stinebaugh, S. U. Shin, D. S. Shin, S. L. Morrison, M. L. Penichet. 2002. An anti-transferrin receptor-avidin fusion protein exhibits both strong proapoptotic activity and the ability to deliver various molecules into cancer cells. Proc. Natl. Acad. Sci. USA 99: 10706-10711.
https://doi.org/10.1073/pnas.162362999 - Lesnikov, V., M. Lesnikova, H. J. Deeg. 2001. Pro-apoptotic and anti-apoptotic effects of transferrin and transferrin-derived glycans on hematopoietic cells and lymphocytes. Exp. Hematol. 29: 477-489.
https://doi.org/10.1016/S0301-472X(00)00687-1 - Hahn, H. P., M. Pang, J. He, J. D. Hernandez, R. Y. Yang, L. Y. Li, X. Wang, F. T. Liu, L. G. Baum. 2004. Galectin-1 induces nuclear translocation of endonuclease G in caspase- and cytochrome c-independent T cell death. Cell Death Differ. 11: 1277-1286.
https://doi.org/10.1038/sj.cdd.4401485 - Patterson, R. J., W. Wang, J. L. Wang. 2004. Understanding the biochemical activities of galectin-1 and galectin-3 in the nucleus. Glycoconj. J. 19: 499-506.
https://doi.org/10.1023/B:GLYC.0000014079.87862.c7 - Moon, B. K., Y. J. Lee, P. Battle, J. M. Jessup, A. Raz, H. R. Kim. 2001. Galectin-3 protects human breast carcinoma cells against nitric oxide-induced apoptosis: implication of galectin-3 function during metastasis. Am. J. Pathol. 159: 1055-1060.
https://doi.org/10.1016/S0002-9440(10)61780-4 - Matarrese, P., A. Tinari, E. Mormone, G. A. Bianco, M. A. Toscano, B. Ascione, G. A. Rabinovich, W. Malorni. 2005. Galectin-1 sensitizes resting human T lymphocytes to Fas (CD95)-mediated cell death via mitochondrial hyperpolarization, budding, and fission. J. Biol. Chem. 280: 6969-6985.
https://doi.org/10.1074/jbc.M409752200 - Fukumori, T., Y. Takenaka, N. Oka, T. Yoshii, V. Hogan, H. Inohara, H. O. Kanayama, H. R. Kim, A. Raz. 2004. Endogenous galectin-3 determines the routing of CD95 apoptotic signaling pathways. Cancer Res. 64: 3376-3379.
https://doi.org/10.1158/0008-5472.CAN-04-0336 - Kleshchenko, Y. Y., T. N. Moody, V. A. Furtak, J. Ochieng, M. F. Lima, F. Villalta. 2004. Human galectin-3 promotes Trypanosoma cruzi adhesion to human coronary artery smooth muscle cells. Infect. Immun. 72: 6717-6721.
https://doi.org/10.1128/IAI.72.11.6717-6721.2004 - Ouellet, M., S. Mercier, I. Pelletier, S. Bounou, J. Roy, J. Hirabayashi, S. Sato, M. J. Tremblay. 2005. Galectin-1 acts as a soluble host factor that promotes HIV-1 infectivity through stabilization of virus attachment to host cells. J. Immunol. 174: 4120-4126.
https://doi.org/10.4049/jimmunol.174.7.4120 - Demetriou, M., M. Granovsky, S. Quaggin, J. W. Dennis. 2001. Negative regulation of T-cell activation and autoimmunity by Mgat5 N-glycosylation. Nature 409: 733-739.
https://doi.org/10.1038/35055582 - Chung, C. D., V. P. Patel, M. Moran, L. A. Lewis, M. C. Miceli. 2000. Galectin-1 induces partial TCR ζ-chain phosphorylation and antagonizes processive TCR signal transduction. J. Immunol. 165: 3722-3729.
https://doi.org/10.4049/jimmunol.165.7.3722 - van der Leij, J., A. van den Berg, T. Blokzijl, G. Harms, H. van Goor, P. Zwiers, R. van Weeghel, S. Poppema, L. Visser. 2004. Dimeric galectin-1 induces IL-10 production in T-lymphocytes: an important tool in the regulation of the immune response. J. Pathol. 204: 511-518.
https://doi.org/10.1002/path.1671 - del Pozo, V., M. Rojo, M. L. Rubio, I. Cortegano, B. Cardaba, S. Gallardo, M. Ortega, E. Civantos, E. Lopez, C. Martin-Mosquero, et al 2002. Gene therapy with galectin-3 inhibits bronchial obstruction and inflammation in antigen-challenged rats through interleukin-5 gene downregulation. Am. J. Respir. Crit. Care Med. 166: 732-737.
https://doi.org/10.1164/rccm.2111031 - Colnot, C., M. A. Ripoche, G. Milon, X. Montagutelli, P. R. Crocker, F. Poirier. 1998. Maintenance of granulocyte numbers during acute peritonitis is defective in galectin-3-null mutant mice. Immunology 94: 290-296.
https://doi.org/10.1046/j.1365-2567.1998.00517.x - La, M., T. V. Cao, G. Cerchiaro, K. Chilton, J. Hirabayashi, K. Kasai, S. M. Oliani, Y. Chernajovsky, M. Perretti. 2003. A novel biological activity for galectin-1: inhibition of leukocyte-endothelial cell interactions in experimental inflammation. Am. J. Pathol. 163: 1505-1515.
https://doi.org/10.1016/S0002-9440(10)63507-9 - Sato, S., N. Ouellet, I. Pelletier, M. Simard, A. Rancourt, M. G. Bergeron. 2002. Role of galectin-3 as an adhesion molecule for neutrophil extravasation during streptococcal pneumonia. J. Immunol. 168: 1813-1822.
https://doi.org/10.4049/jimmunol.168.4.1813 - Moiseeva, E. P., B. Williams, A. H. Goodall, N. J. Samani. 2003. Galectin-1 interacts with β-1 subunit of integrin. Biochem. Biophys. Res. Commun. 310: 1010-1016.
https://doi.org/10.1016/j.bbrc.2003.09.112 - Batista, A., J. Millan, M. Mittelbrunn, F. Sanchez-Madrid, M. A. Alonso. 2004. Recruitment of transferrin receptor to immunological synapse in response to TCR engagement. J. Immunol. 172: 6709-6714.
https://doi.org/10.4049/jimmunol.172.11.6709 - Almkvist, J., A. Karlsson. 2004. Galectins as inflammatory mediators. Glycoconj. J. 19: 575-581.
https://doi.org/10.1023/B:GLYC.0000014088.21242.e0 - Baum, L. G., J. J. Seilhamer, M. Pang, W. B. Levine, D. Beynon, J. A. Berliner. 1995. Synthesis of an endogenous lectin, galectin-1, by human endothelial cells: increased synthesis in activated endothelial cells. Glycoconj. J. 12: 63-68.
https://doi.org/10.1007/BF00731870 - Hoyer, K. K., M. Pang, I. Kuwabara, F.-T. Liu, J. W. Said, L. G. Baum, M. A. Teitell. 2004. An anti-apoptotic role for galectin-3 in diffuse large B cell lymphomas. Am. J. Pathol. 164: 893-902.
https://doi.org/10.1016/S0002-9440(10)63177-X - He, J., L. G. Baum. 2004. Presentation of galectin-1 by extracellular matrix triggers T cell death. J. Biol. Chem. 279: 4705-4712.
https://doi.org/10.1074/jbc.M311183200
Публікації, які цитують цю публікацію
Galectin-3: its role in asthma and potential as an anti-inflammatory target
Peng Gao, Jodie L Simpson, Jie Zhang, Peter G Gibson
https://doi.org/10.1186/1465-9921-14-136 · Повний текст
2013, Respiratory Research, №1
Scopus
WoS
Цитувань Crossref:49
Galectin-3 and prohibitin 1 are autoantigens in IgG4-related cholangitis without clear-cut protective effects against toxic bile acids
Remco Kersten, David C. Trampert, Lowiek M. Hubers, Dagmar Tolenaars, Harmjan R. Vos, Stan F. J. van de Graaf, Ulrich Beuers
https://doi.org/10.3389/fimmu.2023.1251134 ·
2024, Frontiers in Immunology
Scopus
WoS
Glycosylation in a Mammalian Expression System Is Critical for the Production of Functionally Active Leukocyte Immunoglobulin-like Receptor A3 Protein
Terry H.Y. Lee, Ainslie Mitchell, Sydney Liu Lau, Hongyan An, Poornima Rajeaskariah, Valerie Wasinger, Mark Raftery, Katherine Bryant, Nicodemus Tedla
https://doi.org/10.1074/jbc.m113.478578 · Повний текст
2013, Journal of Biological Chemistry, №46, с.32873-32885
Scopus
Цитувань Crossref:12
The Development of Unconventional Extrathymic Activated CD4<sup>+</sup>CD8<sup>+</sup>T Cells in Chagas Disease
Alexandre Morrot
https://doi.org/10.5402/2013/801975 · Повний текст
2013, ISRN Infectious Diseases, с.1-11
Цитувань Crossref:0
Innate immunity to Candida albicans
Yusuke Kiyoura, Riyoko Tamai
https://doi.org/10.1016/j.jdsr.2014.12.001 · Повний текст
2015, Japanese Dental Science Review, №3, с.59-64
Scopus
WoS
Цитувань Crossref:8
Galectin Family Members: Emerging Novel Targets for Lymphoma Therapy?
Yuanwei Shi, Danting Tang, Xiaoqi Li, Xiaoli Xie, Yufu Ye, Lijuan Wang
https://doi.org/10.3389/fonc.2022.889034 ·
2022, Frontiers in Oncology
Scopus
WoS
Цитувань Crossref:0
Comparative analysis of caseins in Saanen goat milk from 3 different regions of China using quantitative proteomics
Zixuan Zhao, Xiaomeng Sun, Ning Liu, Jianjun Cheng, Cuina Wang, Mingruo Guo
https://doi.org/10.3168/jds.2021-21659 ·
2022, Journal of Dairy Science, №7, с.5587-5599
Scopus
WoS
Цитувань Crossref:4
Structural features and anticancer mechanisms of pectic polysaccharides: A review
Fangfang Yue, Jiaxin Xu, Sitan Zhang, Xinyu Hu, Xin Wang, Xin Lü
https://doi.org/10.1016/j.ijbiomac.2022.04.073 ·
2022, International Journal of Biological Macromolecules, с.825-839
Scopus
WoS
Цитувань Crossref:15
The cellular and molecular basis of CD69 function in anti-tumor immunity
Ryo Koyama-Nasu, Yangsong Wang, Ichita Hasegawa, Yukihiro Endo, Toshinori Nakayama, Motoko Y Kimura
https://doi.org/10.1093/intimm/dxac024
2022, International Immunology, №11, с.555-561
Scopus
WoS
Цитувань Crossref:1
Interplay in galectin expression predicts patient outcomes in a spatially restricted manner in PDAC
Oladimeji Abudu, Duy Nguyen, Isabel Millward, Julia E. Manning, Mussarat Wahid, Abbey Lightfoot, Francesca Marcon, Reena Merard, Sandra Margielewska-Davies, Keith Roberts, Rachel Brown, Sarah Powell-Brett, Samantha M. Nicol, Fouzia Zayou, Wayne D. Croft, Hayden Pearce, Paul Moss, Asif J. Iqbal, Helen M. McGettrick
https://doi.org/10.1016/j.biopha.2024.116283 ·
2024, Biomedicine & Pharmacotherapy, с.116283
Scopus
WoS
Цитувань Crossref:0
Знайти всі цитування публікації